Boundary Depth in Floer Theory and Its Applications to Hamiltonian Dynamics and Coisotropic Submanifolds
نویسنده
چکیده
We assign to each nondegenerate Hamiltonian on a closed symplectic manifold a Floer-theoretic quantity called its “boundary depth,” and establish basic results about how the boundary depths of different Hamiltonians are related. As applications, we prove that certain Hamiltonian symplectomorphisms supported in displaceable subsets have infinitely many nontrivial geometrically distinct periodic points, and we also significantly expand the class of coisotropic submanifolds which are known to have positive displacement energy. For instance, any coisotropic submanifold of contact type (in the sense of Bolle) in any closed symplectic manifold has positive displacement energy, as does any stable coisotropic submanifold of a Stein manifold. We also show that any stable coisotropic submanifold admits a Riemannian metric that makes its characteristic foliation totally geodesic, and that this latter, weaker, condition is enough to imply positive displacement energy under certain topological hypotheses.
منابع مشابه
Coisotropic Intersections
In this paper we make the first steps towards developing a theory of intersections of coisotropic submanifolds, similar to that for Lagrangian submanifolds. For coisotropic submanifolds satisfying a certain stability requirement we establish persistence of coisotropic intersections under Hamiltonian diffeomorphisms, akin to the Lagrangian intersection property. To be more specific, we prove tha...
متن کاملOctav Cornea And
Contents Introduction. 1 1. Overview of the main constructions and results. 4 1.1. Definition and properties of the cluster complex 4 1.2. Fine Floer Homology. 9 1.3. Symmetrization. 15 1.4. Applications. 18 2. The cluster complex and its homology. 20 2.1. Clustered moduli spaces 20 2.2. Invariance of the cluster homology. 30 2.3. Various special cases. 35 3. The fine Floer complex and its homo...
متن کاملDevelopment in symplectic Floer theory
In the middle of the 1980s, Floer initiated a new theory, which is now called the Floer theory. Since then the theory has been developed in various ways. In this article we report some recent progress in Floer theory in symplectic geometry. For example, we give an outline of a proof of the flux conjecture, which states that the Hamiltonian diffeomorphism group is C1-closed in the group of sympl...
متن کاملDeformations of Coisotropic Submanifolds and Strong Homotopy Lie Algebroids
In this paper, we study deformations of coisotropic submanifolds in a symplectic manifold. First we derive the equation that governs C∞ deformations of coisotropic submanifolds and define the corresponding C∞-moduli space of coisotropic submanifolds modulo the Hamiltonian isotopies. This is a non-commutative and non-linear generalization of the well-known description of the local deformation sp...
متن کاملCoisotropic Submanifolds and Dual Pairs
The Poisson sigma model is a widely studied two-dimensional topological field theory. This note shows that boundary conditions for the Poisson sigma model are related to coisotropic submanifolds (a result announced in [math.QA/0309180]) and that the corresponding reduced phase space is a (possibly singular) dual pair between the reduced spaces of the given two coisotropic submanifolds. In addit...
متن کامل